Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
J. venom. anim. toxins incl. trop. dis ; 27: e20200177, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1250255

ABSTRACT

The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity. Methods: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol. Results: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately. Conclusion: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.(AU)


Subject(s)
Animals , Poisons/toxicity , Antivenins/biosynthesis , Daboia , Proteomics , Geographic Locations
2.
J. venom. anim. toxins incl. trop. dis ; 26: e20200013, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1135156

ABSTRACT

The Asiatic pit vipers from the Trimeresurus complex are medically important venomous snakes. These pit vipers are often associated with snakebite that leads to fatal coagulopathy and tissue necrosis. The cytotoxic venoms of Trimeresurus spp.; however, hold great potential for the development of peptide-based anticancer drugs. Methods: This study investigated the cytotoxic effect of the venom from Trimeresurus purpureomaculatus, the mangrove pit viper (also known as shore pit viper) which is native in Malaysia, across a panel of human cancer cell lines from breast, lung, colon and prostate as well as the corresponding normal cell lines of each tissue. Results: The venom exhibited dose-dependent cytotoxic activities on all cell lines tested, with median inhibition concentrations (IC50) ranging from 0.42 to 6.98 µg/mL. The venom has a high selectivity index (SI = 14.54) on breast cancer cell line (MCF7), indicating that it is significantly more cytotoxic toward the cancer than to normal cell lines. Furthermore, the venom was fractionated using C18 reversed-phase high-performance liquid chromatography and the anticancer effect of each protein fraction was examined. Fraction 1 that contains a hydrophilic low molecular weight (approximately 7.5 kDa) protein was found to be the most cytotoxic and selective toward the breast cancer cell line (MCF7). The protein was identified using liquid chromatography-tandem mass spectrometry as a venom disintegrin, termed purpureomaculin in this study. Conclusion: Taken together, the findings revealed the potent and selective cytotoxicity of a disintegrin protein isolated from the Malaysian T. purpureomaculatus venom and suggested its anticancer potential in drug discovery.(AU)


Subject(s)
Animals , Trimeresurus , Disintegrins , Cytotoxicity, Immunologic , Neoplasms , Viper Venoms , Antineoplastic Agents
3.
Indian J Exp Biol ; 2018 Feb; 56(2): 112-120
Article | IMSEAR | ID: sea-190917

ABSTRACT

Snake venom is known for its therapeutic applications since long. Researchers have earlier demonstrated antiarthritic, anticancer, anti-inflammatory, antinociceptive activities of snake venom toxins apart from their use in the treatment of alzheimer's disease, neural trauma, parkinson's disease, stroke, etc. King cobra [Ophiophagus hannah (Cantor)] venom L-amino acid oxidase (OH-LAAO), a LAAO that possesses unusual thermal stability, also exhibits potent and selective antiproliferative activity against human tumorigenic cell lines. In this study, we investigated molecular mechanism of the enzyme induced apoptosis by examining the differential protein expressions in MCF-7 cell after treatment with the enzyme, using 2DE for separation and MALDI-TOF/TOF for protein identification. Proteomic analysis revealed a total of 21 differentially expressed proteins that are involved in various biological processes, of which 8 were involved in LAAO-induced cell death, including stress response, oxido-reduction, protein ubiquitination, proteolysis, and apoptosis. Upregulation of NADPH-cytochrome P450 reductase, in particular, may trigger excessive production of cellular ROS and contribute further to cellular oxidative stress and potentiate the cytotoxic action of the enzyme. These alterations of protein expression that are involved in different pathways or cellular functions were presumably caused by the non-specific oxidative modification of transcriptional factors, which may further modulate the activity of the signalling proteins that eventually lead to apoptosis and cell death. The results are consistent with earlier observations from gene expression studies that also demonstrated the involvement of non-specific oxidative modifications of signalling molecules in the apoptosis induced by OH-LAAO.

4.
Indian J Exp Biol ; 2014 Sept; 52(9): 849-859
Article in English | IMSEAR | ID: sea-153768

ABSTRACT

Mucuna pruriens is widely used in traditional medicine for treatments of various diseases. In certain region of Nigeria, the seed is used as oral prophylactics for snakebite. Rats pretreated with the aqueous extract from M. pruriens seed (MPE) were protected against the lethal effects of Naja sputatrix (Javan spitting cobra) venom [Tan et al., J Ethnopharmacol, 123 (2009) 356]. The pretreatment also protected against venom-induced histopathological changes in rat heart. To contribute to the understanding of the mechanism of cardio-protective action, the present study examined the effects of MPE-pretreatment on gene expression profile of rat heart as well as effect of MPE-pretreatment on N. sputatrix venom-induced gene expression alterations in rat heart. The gene expression profiles were examined by microarray analysis and verified by real time PCR. The results showed that pretreatment with MPE caused 50 genes in the rat heart substantially up-regulated of which 19 were related to immune responses, 7 were related to energy production and metabolism. The up-regulation of genes related to energy metabolism probably plays a role in maintaining the viability of the heart. Four other genes that were up-regulated (alpha synuclein, natriuretic peptide precursor, calsequestrin and triadin) were involved in the maintenance of homeostasis of the heart or maintaining its viability, thereby contributing to the direct protective action. The results demonstrated that protective effect of MPE pretreatment against snake venom poisoning may involve a direct action on the heart.


Subject(s)
Animals , Elapid Venoms/toxicity , Gene Expression Profiling , Gene Expression Regulation/drug effects , Heart/drug effects , Heart/physiology , Male , Mucuna/chemistry , Myocardium/chemistry , Myocardium/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protective Agents/chemistry , Protective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Seeds/chemistry
5.
Indian J Exp Biol ; 2013 Dec; 51(12): 1063-1069
Article in English | IMSEAR | ID: sea-150293

ABSTRACT

The major hemorrhagin from C. purpureomaculatus (mangrove pit viper) venom was purified to homogeneity and termed Maculatoxin. Maculatoxin has a molecular weight of 38 kDa as determined by SDS-PAGE. It is an acidic protein (pI= 4.2) and exhibited proteolytic and hemorrhagic activities (MHD10 = 0.84 μg in mice) but was not lethal to mice at a dose of 1 μg/g. The hemorrhagic activity of Maculatoxin was completely inactivated by EDTA and partially inhibited by ATP and citrate. The N-terminal sequence of Maculatoxin (TPEQQRFPPTYIDLGIFVDHGMYAT) shares a significant degree of homology with the metalloprotease domain of other venom hemorrhagins. Indirect ELISA showed anti-Maculatoxin cross reacted with protein components of many snake venoms. In the double-sandwich ELISA, however, anti-Maculatoxin cross-reacted only with venoms of certain species of the Trimeresurus (Asia lance-head viper) complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex


Subject(s)
Animals , Chromatography, Gel , Cross Reactions/immunology , Endopeptidases/chemistry , Endopeptidases/immunology , Endopeptidases/isolation & purification , Mice , Molecular Weight , Snake Venoms/genetics , Snake Venoms/immunology , Species Specificity , Trimeresurus/immunology , Trimeresurus/physiology
6.
Indian J Exp Biol ; 2011 Apr; 49(4): 254-259
Article in English | IMSEAR | ID: sea-145122

ABSTRACT

Mucuna pruriens has been used by native Nigerians as a prophylactic for snakebite. The protective effects of M. pruriens seed extract (MPE) were investigated against the pharmacological actions of N. sputatrix (Javan spitting cobra) venom in rats. The results showed that MPE-pretreatment protected against cardiorespiratory and, to a lesser extent, neuromuscular depressant effects of N. sputatrix venom. These may be explained at least in part by the neutralisation of the cobra venom toxins by anti-MPE antibodies elicited by the MPE pretreatment.

SELECTION OF CITATIONS
SEARCH DETAIL